大家好,今天小编关注到一个比较有意思的话题,就是关于人工智能学习 知乎的问题,于是小编就整理了1个相关介绍人工智能学习 知乎的解答,让我们一起看看吧。
人工智能的深度学习是什么意思?好学么?
深度学习其实是机器学习的深化,本质就是分配权重的多重调整,是多条数学公式。机器学习就是对输入的数据进行分配权重,对分配权重后的数据通过一定的判断然后输出合适的数据。
权重就是数据的一个数值,代表这个数据重不重要,有多重要。分配权重的工具就是数学,线性代数,离散数学之类的。
设定一个规则,使数据通过这个规则,对数据的一些特征进行判断,过滤掉一些无意义的,或者是不重要的数据。而如何调整这个规则的判断条件,更准确的过滤数据,就是机器学习。
在机器学习的基础上,添加多层规则,数据依次经过每层规则,规则的层数称为深度,层数越多,数据过滤越充分,增加深度和调整规则的过程,就是深度学习。
深度学习可以需要大量的数据来调整规则。
在深度学习的基础上,添加一个或多个调整规则的规则,通过输入数据和对输出数据的预测,对机器学习的调整方式进行自动优化,使之更高效,更合理的处理数据,优化的方法就称为人工智能。
举个例子:
一家公司招10个人,但是收到了20分简历,也就是输入20份数据,输出10份数据。
进行面试时,其中一轮面试内容的调整就相当于机器学习,简历上写的和面试时说的就是数据的特征,面试官的问题都会,面试者的数据权重提高,反之降低。
深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。
深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。
深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。
我们来一起梳理一下人工智能与深度学习的关系。
首先,大家所谈论的人工智能可以分为两个层面:“强人工智能”和“ 弱人工智能”。其中:
希望借鉴人类的智能行为,研制出更好的工具以减轻人类智力劳动,类似于“高级仿生学”。
希望研制出达到甚至超越人类智慧水平的人造物,具有心智和意识、能根据自己的意图开展行动,可谓“人造智能”。
AI技术现在所取得的进展和成功,是缘于“弱人工智能”而不是“强人工智能”的研究。要想让AI借鉴人类的智能行为,关键的一个环节是让AI模拟人类的学习行为。
所以,这里面有个非常关键的技术,叫做机器学习。
机器学习是专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
目前的机器学习可以分为三大类:
(1)有监督的学习
数据具备特征(features)和预测目标(labels),又分为:
到此,以上就是小编对于人工智能学习 知乎的问题就介绍到这了,希望介绍关于人工智能学习 知乎的1点解答对大家有用。